undefined

MAMAF-Net: Motion-aware and multi-attention fusion network for stroke diagnosis

Julkaisuvuosi

2024

Tekijät

Degerli, Aysen; Jäkälä, Pekka; Pajula, Juha; Immonen, Milla; López, Miguel Bordallo

Abstrakti:

<p>Stroke is a major cause of mortality and disability worldwide from which one in four people are in danger of incurring in their lifetime. The pre-hospital stroke assessment plays a vital role in identifying stroke patients accurately to accelerate further examination and treatment in hospitals. Accordingly, the National Institutes of Health Stroke Scale (NIHSS), Cincinnati Pre-hospital Stroke Scale (CPSS) and Face Arm Speed Time (F.A.S.T.) are globally known tests for stroke assessment. However, the validity of these tests is skeptical in the absence of neurologists and access to healthcare may be limited. Therefore, in this study, we propose a motion-aware and multi-attention fusion network (MAMAF-Net) that can detect stroke from multiple examination videos. Contrary to other studies on stroke detection from video analysis, our study for the first time collected a dataset encapsulating transient ischemic attack (TIA), stroke, and healthy controls, and proposes an end-to-end solution using multiple video recordings of each subject. The proposed MAMAF-Net consists of motion-aware modules to sense the mobility of patients, attention modules to fuse the multi-input video data, and 3D convolutional layers to perform diagnosis from the attention-based extracted features. Experimental results over the collected Stroke-data dataset show that the proposed MAMAF-Net achieves a successful detection of stroke with the highest levels of 93.62% sensitivity, 91.19% F1-Score, and 0.7472 Kappa measure in addition to 3.92% increase in the AUC score compared to state-of-the-art deep learning models.</p>
Näytä enemmän

Organisaatiot ja tekijät

Itä-Suomen yliopisto

Jäkälä Pekka Artti Orcid -palvelun logo

Oulun yliopisto

Bordallo Lopez Miguel Orcid -palvelun logo

Teknologian tutkimuskeskus VTT Oy

Degerli Aysen Orcid -palvelun logo

Pajula Juha Orcid -palvelun logo

López Miguel Bordallo Orcid -palvelun logo

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Lehti

Artikkelin tyyppi

Alkuperäisartikkeli:

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisukanavan tiedot

Volyymi

95

Artikkelinumero

106381

Julkaisu­foorumi

52411

Julkaisufoorumitaso

1

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Kyllä

Julkaisukanavan avoin saatavuus

Osittain avoin julkaisukanava

Kustantajan version lisenssi

CC BY

Rinnakkaistallennettu

Kyllä

Rinnakkaistallenteen lisenssi

CC BY

Muut tiedot

Tieteenalat

Tietojenkäsittely ja informaatiotieteet; Lääketieteen tekniikka; Biolääketieteet

Avainsanat

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Kustantajan kansainvälisyys

Kansainvälinen

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Ei

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1016/j.bspc.2024.106381

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä