undefined

Depression Recognition using Remote Photoplethysmography from Facial Videos

Julkaisuvuosi

2023

Tekijät

Álvarez Casado, Constantino; Canellas, Manuel Lage; Lopez, Miguel Bordallo

Tiivistelmä

Depression is a mental illness that may be harmful to an individual's health. The detection of mental health disorders in the early stages and a precise diagnosis are critical to avoid social, physiological, or psychological side effects. This work analyzes physiological signals to observe if different depressive states have a noticeable impact on the blood volume pulse (BVP) and the heart rate variability (HRV) response. Although typically, HRV features are calculated from biosignals obtained with contact-based sensors such as wearables, we propose instead a novel scheme that directly extracts them from facial videos, just based on visual information, removing the need for any contact-based device. Our solution is based on a pipeline that is able to extract complete remote photoplethysmography signals (rPPG) in a fully unsupervised manner. We use these rPPG signals to calculate over 60 statistical, geometrical, and physiological features that are further used to train several machine learning regressors to recognize different levels of depression. Experiments on two benchmark datasets indicate that this approach offers comparable results to other audiovisual modalities based on voice or facial expression, potentially complementing them. In addition, the results achieved for the proposed method show promising and solid performance that outperforms hand-engineered methods and is comparable to deep learning-based approaches.
Näytä enemmän

Organisaatiot ja tekijät

Oulun yliopisto

Álvarez Casado Constantino Orcid -palvelun logo

Lage Cañellas Manuel

Bordallo Lopez Miguel Orcid -palvelun logo

Teknologian tutkimuskeskus VTT Oy

Lopez Miguel Bordallo Orcid -palvelun logo

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Lehti

Artikkelin tyyppi

Alkuperäisartikkeli

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisukanavan tiedot

Kustantaja

IEEE

Numero

4

Sivut

3305-3316

Julkaisu­foorumi

57514

Julkaisufoorumitaso

3

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Kyllä

Julkaisukanavan avoin saatavuus

Osittain avoin julkaisukanava

Kustantajan version lisenssi

CC BY

Rinnakkaistallennettu

Kyllä

Rinnakkaistallenteen lisenssi

CC BY

Muut tiedot

Tieteenalat

Tietojenkäsittely ja informaatiotieteet; Sähkö-, automaatio- ja tietoliikennetekniikka, elektroniikka; Lääketieteen tekniikka; Neurologia ja psykiatria

Avainsanat

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Julkaisumaa

Yhdysvallat (USA)

Kustantajan kansainvälisyys

Kansainvälinen

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Ei

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1109/taffc.2023.3238641

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä