Estimation of Unmeasurable Vibration of a Rotating Machine Using Kalman Filter
Julkaisuvuosi
2022
Tekijät
Neisi, Neda; Nieminen, Vesa; Kurvinen, Emil; Lämsä, Ville; Sopanen, Jussi
Tiivistelmä
Rotating machines are typically equipped with vibration sensors at the bearing location and the information from these sensors is used for condition monitoring. Installing additional sensors may not be possible due to limitations of the installation and cost. Thus, the internal condition of machines might be difficult to evaluate. This study presents a numerical and experimental study on the case of a rotor supported by four rolling element bearings (REBs). As such, the study resembles a complex real-life industrial multi-fault scenario: a lack of information, uncertainties, and nonlinearities increase the overall complexity of the system. The study provides a methodology for modeling and analyzing complicated systems without prior information. First, the unknown model parameters of the system are approximated using measurement data and the linearized model. Thereafter, the Unscented Kalman Filter (UKF) is applied to the estimation of the vibration characteristics in unmeasured locations. As a result, the estimation of unmeasured vibration characteristics has a reasonable agreement with the rotor whirling, and the estimated results are within a 95% confidence interval. The proposed methodology can be considered as a transfer learning method that can be further used in other identification problems in the field of rotating machinery.
Näytä enemmänOrganisaatiot ja tekijät
Oulun yliopisto
Kurvinen Emil
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Kyllä
Julkaisukanavan avoin saatavuus
Kokonaan avoin julkaisukanava
Kustantajan version lisenssi
CC BY
Rinnakkaistallennettu
Kyllä
Rinnakkaistallenteen lisenssi
CC BY
Muut tiedot
Tieteenalat
Kone- ja valmistustekniikka; Materiaalitekniikka
Avainsanat
[object Object],[object Object],[object Object],[object Object],[object Object]
Julkaisumaa
Sveitsi
Kustantajan kansainvälisyys
Kansainvälinen
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Ei
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.3390/machines10121116
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä