A Mathematical Theory of Trustworthy Federated Learning
Rahoitetun hankkeen kuvaus
Artificial intelligence (AI) services are now integral to our daily lives, influencing aspects such as job searches, housing, and relationships through AI-powered platforms. Many of these services employ federated learning (FL) systems to create personalized machine learning (ML) models for users, providing tailored predictions on interests like job offers, dating, and music videos. Despite the usefulness of FL systems, there is increasing evidence for their potentially harmful effects, such as boosting addictive user behavior or even genocide. This project breaks ground for trustworthy FL, shifting the focus of current FL research towards a more human-centric perspective. Besides the computational and statistical properties of FL systems, this project emphasizes important design criteria for trustworthy AI.
Näytä enemmänAloitusvuosi
2024
Päättymisvuosi
2028
Myönnetty rahoitus
Rahoittaja
Suomen Akatemia
Rahoitusmuoto
Akatemiahanke
Päättäjä
Luonnontieteiden ja tekniikan tutkimuksen toimikunta
13.06.2024
13.06.2024
Muut tiedot
Rahoituspäätöksen numero
363624
Tieteenalat
Matematiikka
Tutkimusalat
Sovellettu matematiikka