StarDist_BF_Monocytes_dataset
Kuvaus
This repository includes a StarDist deep learning model and its training and validation datasets for detecting mononucleated cells perfused over an endothelial cell monolayer. The model was trained on 27 manually annotated images and achieved an average F1 Score of 0.941. The dataset and model are helpful for biomedical research, especially in studying interactions between mononucleated and endothelial cells.
Specifications
Model: StarDist for mononucleated cell detection on endothelial cells
Training Dataset:
Number of Images: 27 paired brightfield microscopy images and label masks
Microscope: Nikon Eclipse Ti2-E, 20x objective
Data Type: Brightfield microscopy images with manually segmented masks
File Format: TIFF (.tif)
Brightfield Images: 16-bit
Masks: 8-bit
Image Size: 1024 x 1022 pixels (Pixel size: 650 nm)
Training Parameters:
Epochs: 400
Patch Size: 992 x 992 pixels
Batch Size: 2
Performance:
Average F1 Score: 0.941
Average IoU: 0.831
Model Training: Conducted using ZeroCostDL4Mic (https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki)
Reference
Fast label-free live imaging reveals key roles of flow dynamics and CD44-HA interaction in cancer cell arrest on endothelial monolayers
Gautier Follain, Sujan Ghimire, Joanna W. Pylvänäinen, Monika Vaitkevičiūtė, Diana Wurzinger, Camilo Guzmán, James RW Conway, Michal Dibus, Sanna Oikari, Kirsi Rilla, Marko Salmi, Johanna Ivaska, Guillaume Jacquemet
bioRxiv 2024.09.30.615654; doi: https://doi.org/10.1101/2024.09.30.615654
Näytä enemmänJulkaisuvuosi
2024
Aineiston tyyppi
Tekijät
Zenodo - Julkaisija
Gautier Follain - Tekijä
Johanna Ivaska - Tekijä
Projekti
Muut tiedot
Tieteenalat
Biokemia, solu- ja molekyylibiologia
Kieli
Saatavuus
Avoin