StarDist_BF_Neutrophil_dataset

Kuvaus

This repository includes a StarDist deep learning model and its training and validation datasets for detecting neutrophils perfused over an endothelial cell monolayer. The model was trained on 36 manually annotated images, achieving an average F1 Score of 0.969. The dataset and model are intended for use in biomedical research, particularly for analyzing interactions between neutrophils and endothelial cells. Specifications Model: StarDist for neutrophil detection on endothelial cells Training Dataset: Number of Images: 36 paired brightfield microscopy images and label masks Microscope: Nikon Eclipse Ti2-E, 20x objective Data Type: Brightfield microscopy images with manually segmented masks File Format: TIFF (.tif) Brightfield Images: 16-bit Masks: 8-bit Image Size: 1024 x 1022 pixels (Pixel size: 650 nm) Training Parameters: Epochs: 400 Patch Size: 992 x 992 pixels Batch Size: 2 Performance: Average F1 Score: 0.969 Average IoU: 0.914 Model Training: Conducted using ZeroCostDL4Mic (https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki) Reference Biorxiv paper
Näytä enemmän

Julkaisuvuosi

2024

Aineiston tyyppi

Tekijät

University of Turku

Gautier Follain - Tekijä

Johanna Ivaska - Tekijä

Zenodo - Julkaisija

Guillaume Jacquemet Orcid -palvelun logo - Tekijä

Joanna Pylvänäinen Orcid -palvelun logo - Tekijä

Sujan Ghimire Orcid -palvelun logo - Tekijä

Projekti

Muut tiedot

Tieteenalat

Biokemia, solu- ja molekyylibiologia

Kieli

Saatavuus

Avoin

Lisenssi

Creative Commons Nimeä 4.0 Kansainvälinen (CC BY 4.0)

Avainsanat

Biochemistry and Cell Biology, neutrophils

Asiasanat

Ajallinen kattavuus

undefined

Liittyvät aineistot