Glide HTVS docking results of Enamine REAL lead-like library (1.56 billion compounds) for targets SurA and GAK

Kuvaus

This dataset is composed of two sets of docking results for the 1.56 billion compounds of the Enamine REAL (ER) lead-like library (obtained March 2021). The intended use of the data is to serve as a giga-scale benchmarking dataset, e.g. for machine learning approaches. Both docking studies were performed with Schrödinger Suite 2021-1 Glide (v9), using the HTVS protocol.  [1] Results for the SurA target (receptor based on PDB-ID 1m5y, chain A): Enamine_REAL_lead-like_SurA_glide_HTVS_docking_scores.csv.gz [2] Results for the GAK target (receptor PDB-ID 4y8d, chain A; hydrogen-bonding constraint on Cys126 backbone amide hydrogen was used): Enamine_REAL_lead-like_GAK_glide_HTVS_docking_scores.csv.gz  Result files are gzipped, white-space separated text files with the following fields: SMILES, compound title (ER identifier), (Glide) docking score. Compounds that failed to produce any conformers in ligand preparation or failed to produce a pose during docking for any reason were assigned a score 5.0.
Näytä enemmän

Julkaisuvuosi

2023

Aineiston tyyppi

Tekijät

Itä-Suomen yliopisto - Oikeuksienhaltija

Farmasian laitos

Antti Poso Orcid -palvelun logo - Muu tekijä

Ina Pöhner Orcid -palvelun logo - Muu tekijä, Tekijä, Kuraattori, Julkaisija

Toni Sivula Orcid -palvelun logo - Muu tekijä, Tekijä

Projekti

Muut tiedot

Tieteenalat

Tietojenkäsittely ja informaatiotieteet; Farmasia

Kieli

Saatavuus

Avoin

Lisenssi

Creative Commons Nimeä 4.0 Kansainvälinen (CC BY 4.0)

Avainsanat

drug discovery, machine learning, benchmark, docking, Enamine, GAK, giga-scale, Glide, SurA, virtual screening

Asiasanat

Ajallinen kattavuus

undefined

Liittyvät aineistot