Pretrained model weights for the paper "Electrostatic Discovery Atomic Force Microscopy"

Kuvaus

Pretrained weights for the machine learning models used in the paper "Electrostatic Discovery Atomic Force Microscopy". The weights are stored in the Pytorch .pth format. Several sets of weights are provided: base: The base model used for all predictions in the main paper and used for comparison in the various test in the supplementary information of the paper. single-channel: Model trained on only a single CO-tip AFM input. CO-Cl: Model trained on alternative tip combination of CO and Cl. Xe-Cl: Model trained on alternative tip combination of Xe and Cl. constant-noise: Model trained using constant noise amplitude instead of normally distributed amplitude. uniform-noise: Model trained using uniform random noise amplitude instead of normally distributed amplitude. no-gradient: Model trained without background-gradient augmentation. matched-tips: Model trained on data with matched tip distance between CO and Xe, instead of independently randomized distances.
Näytä enemmän

Julkaisuvuosi

2021

Aineiston tyyppi

Tekijät

School common, SCI

Niko Oinonen Orcid -palvelun logo - Tekijä

Zenodo - Julkaisija

Projekti

Muut tiedot

Tieteenalat

Nanoteknologia

Kieli

Saatavuus

Avoin

Lisenssi

Creative Commons Nimeä 4.0 Kansainvälinen (CC BY 4.0)

Avainsanat

Asiasanat

Ajallinen kattavuus

undefined

Liittyvät aineistot