Replication Data for: Measurement Error When Surveying Issue Positions: A MultiTrait MultiError Approach
Kuvaus
Voters’ issue preferences have been shown to be key determinants of vote choice, making it essential to reduce measurement error in responses to issue questions in surveys. This study uses a MultiTrait MultiError approach to assess the data quality of issue questions by separating four sources of variation: trait, acquiescence, method, and random error. The questions generally achieved moderate data quality, with 76% on average representing valid variance. Random error made up the largest proportion of error (23%). Error due to method and acquiescence was small. We found that 5-point scales are generally better than 11-point scales, while answers by respondents with lower political sophistication achieved lower data quality. The findings indicate a need to focus on decreasing random error when studying issue positions.
Näytä enemmänJulkaisuvuosi
2025
Aineiston tyyppi
Tekijät
Harvard Dataverse - Julkaisija
Helsinki University
Peter Söderlund - Tekijä
The University of Manchester
Alexandru Cernat - Tekijä
Rasmus Siren - Tekijä
Projekti
Muut tiedot
Tieteenalat
Valtio-oppi, hallintotiede
Kieli
Saatavuus
Avoin