Self Consistent Recurrent Neural Network for Path Dependent Deformation

Kuvaus

Data and Machine Learning codes for the paper: Title : Self Consistent Recurrent Neural Network for Path Dependent Deformation Abstract : Current neural network (NN) structures can learn patterns from data points with historical dependence. Specifically, in natural language processing (NLP), sequential learning has transitioned from recurrence-based architectures to transformer-based architectures. However, it is not known in advance which NN architectures will perform best on datasets containing deformation history due to mechanical loading. Thus, this study ascertains the appropriateness of 1D-convolutional, recurrent, and transformer-based architectures for predicting material failure based on the earlier states in the form of deformation history. Following this investigation, the crucial issues arising from the mathematical computation process of the best-performing NN architectures and the physical properties of the deformation paths are examined in detail. Additionally, we propose a novel and adaptable RNN approach to address the fundamental challenges of truncation and consistency related to obtaining estimations that are compatible with the natural physical properties of deformation paths. This study will serve as a foundation for localization estimation and pave the way for future endeavors to propose further solutions to encountered challenges.
Näytä enemmän

Julkaisuvuosi

2024

Aineiston tyyppi

Tekijät

Department of Energy and Mechanical Engineering

YATKIN Muhammed Adil - Tekijä

Jani Romanoff Orcid -palvelun logo - Muu tekijä

Joshua Stuckner - Muu tekijä

Mihkel Körgesaar - Muu tekijä

NASA Glenn Research Center - Muu tekijä

Tallinn University of Technology - Muu tekijä

Zenodo - Julkaisija

Projekti

Muut tiedot

Tieteenalat

Kone- ja valmistustekniikka

Kieli

Saatavuus

Avoin

Lisenssi

Creative Commons Nimeä 4.0 Kansainvälinen (CC BY 4.0)

Avainsanat

Asiasanat

Ajallinen kattavuus

undefined

Liittyvät aineistot