Au38Q MBTR-K3

Kuvaus

The dataset contains nine variants of the same idea. In each, an observation refers to a MBTR description of the structural angles of the Au38Q hybrid nanoparticle of a single timestep in a DFT simulation and the potential energy of the said nanoparticle at the timestep. The input space is the MBTR description and the output space is the potential energy. Features refer to the output of the MBTR descriptor, here used as the input. We used three different numbers of observations and three different numbers of descriptor accuracies. Regarding the the number of observations, we used RS-maximin to find out the most different observations available and used the first 4000 and first 8000 as the selections in 4k and 8k variants. Regarding the number of features, we used different descriptor accuracy values [2,10,100] that produced descriptors of lengths [80,400,4000]. This allowed the number of features to represent the data description resolution. Downsampling of the number of features from 4000 to lower numbers was not used. Further details are presented in paper Do Randomized Algorithms Improve the Efficiency of Minimal Learning Machine? by Linja et al.
Näytä enemmän

Julkaisuvuosi

2024

Aineiston tyyppi

Tekijät

Informaatioteknologian tiedekunta

Linja, Joakim - Oikeuksienhaltija, Tekijä

Hämäläinen, Joonas Orcid -palvelun logo - Tekijä

Kärkkäinen, Tommi Orcid -palvelun logo - Tekijä

Nieminen, Paavo Orcid -palvelun logo - Tekijä

Zenodo - Julkaisija

Projekti

Muut tiedot

Tieteenalat

Tietojenkäsittely ja informaatiotieteet

Kieli

englanti

Saatavuus

Avoin

Lisenssi

Creative Commons Nimeä 4.0 Kansainvälinen (CC BY 4.0)

Avainsanat

machine learning

Asiasanat

koneoppiminen, regressioanalyysi

Ajallinen kattavuus

undefined

Liittyvät aineistot