Data from: Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis

Kuvaus

Recent advances in the scale and diversity of population genomic datasets for bacteria now provide the potential for genome-wide patterns of co-evolution to be studied at the resolution of individual bases. Here we describe a new statistical method, genomeDCA, which uses recent advances in computational structural biology to identify the polymorphic loci under the strongest co-evolutionary pressures. We apply genomeDCA to two large population data sets representing the major human pathogens Streptococcus pneumoniae (pneumococcus) and Streptococcus pyogenes (group A Streptococcus). For pneumococcus we identified 5,199 putative epistatic interactions between 1,936 sites. Over three-quarters of the links were between sites within the pbp2x, pbp1a and pbp2b genes, the sequences of which are critical in determining non-susceptibility to beta-lactam antibiotics. A network-based analysis found these genes were also coupled to that encoding dihydrofolate reductase, changes to which underlie trimethoprim resistance. Distinct from these antibiotic resistance genes, a large network component of 384 protein coding sequences encompassed many genes critical in basic cellular functions, while another distinct component included genes associated with virulence. The group A Streptococcus (GAS) data set population represents a clonal population with relatively little genetic variation and a high level of linkage disequilibrium across the genome. Despite this, we were able to pinpoint two RNA pseudouridine synthases, which were each strongly linked to a separate set of loci across the chromosome, representing biologically plausible targets of co-selection. The population genomic analysis method applied here identifies statistically significantly co-evolving locus pairs, potentially arising from fitness selection interdependence reflecting underlying protein-protein interactions, or genes whose product activities contribute to the same phenotype. This discovery approach greatly enhances the future potential of epistasis analysis for systems biology, and can complement genome-wide association studies as a means of formulating hypotheses for targeted experimental work.
Näytä enemmän

Julkaisuvuosi

2017

Aineiston tyyppi

Tekijät

Department of Computer Science

Claire Chewapreecha - Muu tekijä

Erik Aurell - Muu tekijä

James M. Musser - Muu tekijä

Jukka Corander - Muu tekijä

Julian Parkhill - Muu tekijä

Maiju Pesonen - Muu tekijä

Nicholas J Croucher - Muu tekijä

Paul Turner - Muu tekijä

Santeri Puranen Orcid -palvelun logo - Muu tekijä

Simon R Harris - Muu tekijä

Stephen B. Beres - Muu tekijä

Stephen D Bentley - Muu tekijä

Yingying Xu - Muu tekijä

Marcin Skwark - Tekijä

Chinese Academy of Sciences - Muu tekijä

Cornell University - Muu tekijä

Dryad Digital Repository - Julkaisija

Houston Methodist Hospital - Muu tekijä

Imperial College London - Muu tekijä

University of Cambridge - Muu tekijä

University of Helsinki - Muu tekijä

University of Oslo - Muu tekijä

University of Oxford - Muu tekijä

Vanderbilt University - Muu tekijä

Wellcome Trust Sanger Institute - Muu tekijä

Projekti

Muut tiedot

Tieteenalat

Tietojenkäsittely ja informaatiotieteet

Kieli

Saatavuus

Avoin

Lisenssi

Creative Commons Yleismaailmallinen (CC0 1.0) Public Domain lausuma

Avainsanat

Asiasanat

Ajallinen kattavuus

undefined

Liittyvät aineistot