Identification of multiplicatively acting modulatory mutational signatures in cancer

Kuvaus

Abstract Background A deep understanding of carcinogenesis at the DNA level underpins many advances in cancer prevention and treatment. Mutational signatures provide a breakthrough conceptualisation, as well as an analysis framework, that can be used to build such understanding. They capture somatic mutation patterns and at best identify their causes. Most studies in this context have focused on an inherently additive analysis, e.g. by non-negative matrix factorization, where the mutations within a cancer sample are explained by a linear combination of independent mutational signatures. However, other recent studies show that the mutational signatures exhibit non-additive interactions. Results We carefully analysed such additive model fits from the PCAWG study cataloguing mutational signatures as well as their activities across thousands of cancers. Our analysis identified systematic and non-random structure of residuals that is left unexplained by the additive model. We used hierarchical clustering to identify cancer subsets with similar residual profiles to show that both systematic mutation count overestimation and underestimation take place. We propose an extension to the additive mutational signature model—multiplicatively acting modulatory processes—and develop a maximum-likelihood framework to identify such modulatory mutational signatures. The augmented model is expressive enough to almost fully remove the observed systematic residual patterns. Conclusion We suggest the modulatory processes biologically relate to sample specific DNA repair propensities with cancer or tissue type specific profiles. Overall, our results identify an interesting direction where to expand signature analysis.
Näytä enemmän

Julkaisuvuosi

2023

Aineiston tyyppi

Tekijät

Department of Computer Science

Dovydas Kičiatovas - Tekijä

Esa Pitkänen - Tekijä

Henri Pesonen Orcid -palvelun logo - Tekijä

Jukka Corander - Tekijä

Miika Kailas - Tekijä

Qingli Guo - Tekijä

Samuel Kaski - Tekijä

Ville Mustonen - Tekijä

Univ Manchester, Jodrell Bank Centre for Astrophysics, University of Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys - Muu tekijä

University of Helsinki - Muu tekijä

University of Jyväskylä - Muu tekijä

University of Oslo - Muu tekijä

Wellcome Trust Sanger Institute - Muu tekijä

figshare - Julkaisija

Projekti

Muut tiedot

Tieteenalat

Tietojenkäsittely ja informaatiotieteet

Kieli

Saatavuus

Avoin

Lisenssi

Creative Commons Nimeä 4.0 Kansainvälinen (CC BY 4.0)

Avainsanat

Asiasanat

Ajallinen kattavuus

undefined

Liittyvät aineistot