Data from: Rhythmicity of neuronal oscillations delineates their cortical and spectral architecture

Kuvaus

Neuronal oscillations are commonly analyzed with power spectral methods that quantify signal amplitude, but not rhythmicity or 'oscillatoriness' per se. Here we introduce a new approach, the phase-autocorrelation function (pACF), for direct quantification of rhythmicity. We applied pACF to human intracerebral stereo-electroencephalography (SEEG) and magnetoencephalography (MEG) data and uncovered a spectrally and anatomically fine-grained cortical architecture in the rhythmicity of single- and multi-frequency neuronal oscillations. Evidencing the functional significance of rhythmicity, we found it to be a prerequisite for long-range synchronization in resting-state networks and to be dynamically modulated during event-related processing. We also extended the pACF approach to measure 'burstiness' of oscillatory processes and characterized regions with stable and bursty oscillations. These findings show that rhythmicity is double-dissociable from amplitude and constitutes a functionally relevant and dynamic characteristic of neuronal oscillations.
Näytä enemmän

Julkaisuvuosi

2024

Aineiston tyyppi

Tekijät

Department of Neuroscience and Biomedical Engineering

Felix Siebenhühner - Tekijä

Gabriele Arnulfo - Tekijä

Joonas Juvonen - Tekijä

Matias Palva Orcid -palvelun logo - Tekijä

Satu Palva - Tekijä

Vladislav Myrov Orcid -palvelun logo - Tekijä

University of Genoa - Muu tekijä

University of Glasgow - Muu tekijä

University of Helsinki - Muu tekijä

Zenodo - Julkaisija

Projekti

Muut tiedot

Tieteenalat

Neurotieteet

Kieli

Saatavuus

Avoin

Lisenssi

Creative Commons Yleismaailmallinen (CC0 1.0) Public Domain lausuma

Avainsanat

Asiasanat

Ajallinen kattavuus

undefined

Liittyvät aineistot