Machine learning interatomic potential for studying radiation effects in germanium - The dataset
Kuvaus
This dataset supplies training data for a Gaussian Approximation Potential for germanium, developed specifically for radiation damage studies. It encompasses 451 structures from dimers, multiple bulk crystal phases, liquid configurations at various temperatures, a diverse range of defect structures, and other relevant configurations. All structures are stored in extended XYZ format, with each configuration annotated by total energy, atomic forces, and virial stresses calculated via DFT at the PBE level using VASP. Additional details on dataset generation and DFT calculations are provided in the published paper.
Näytä enemmänJulkaisuvuosi
2025
Aineiston tyyppi
Tekijät
Ali Hamedani - Muu tekijä
Andrea E. Sand - Muu tekijä
Ruoyan Jin - Tekijä, Julkaisija
Projekti
Muut tiedot
Tieteenalat
Fysiikka
Kieli
Saatavuus
Avoin