StarDist_BF_Monocytes_dataset
Kuvaus
This repository includes a StarDist deep learning model and its training and validation datasets for detecting mononucleated cells perfused over an endothelial cell monolayer. The model was trained on 27 manually annotated images and achieved an average F1 Score of 0.941. The dataset and model are helpful for biomedical research, especially in studying interactions between mononucleated and endothelial cells. Specifications Model: StarDist for mononucleated cell detection on endothelial cells Training Dataset: Number of Images: 27 paired brightfield microscopy images and label masks Microscope: Nikon Eclipse Ti2-E, 20x objective Data Type: Brightfield microscopy images with manually segmented masks File Format: TIFF (.tif) Brightfield Images: 16-bit Masks: 8-bit Image Size: 1024 x 1022 pixels (Pixel size: 650 nm) Training Parameters: Epochs: 400 Patch Size: 992 x 992 pixels Batch Size: 2 Performance: Average F1 Score: 0.941 Average IoU: 0.831 Model Training: Conducted using ZeroCostDL4Mic (https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki) Reference Biorxiv paper
Näytä enemmänJulkaisuvuosi
2024
Aineiston tyyppi
Tekijät
University of Turku
Gautier Follain - Tekijä
Johanna Ivaska - Tekijä
Zenodo - Julkaisija
Projekti
Muut tiedot
Tieteenalat
Biokemia, solu- ja molekyylibiologia
Kieli
Saatavuus
Avoin