Predicting Intersystem Crossing Rate Constants of Alkoxy-Radical Pairs with Structure-Based Descriptors and Machine Learning
Kuvaus
This repository contains datasets and machine learning code for predicting intersystem crossing (ISC) rate constants in radical pair systems. The data includes geometries, spin-orbit couplings, excitation energies, and ISC rates for 98,082 conformations of ten different alkoxy radical dimers. Three ML models—Random Forest, CatBoost, and a feed-forward neural network—were trained using geometrical descriptors as inputs. Scripts for hyperparameter optimization, feature selection, and evaluation are also provided.
Näytä enemmänJulkaisuvuosi
2025
Aineiston tyyppi
Tekijät
Munich Center for Machine Learning - Muu tekijä
Technical University of Munich - Muu tekijä
University of Helsinki - Muu tekijä
Zenodo - Julkaisija
Projekti
Muut tiedot
Tieteenalat
Fysiikka
Kieli
Saatavuus
Avoin